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Abstract. In this talk we will investigate the structure of a class of closable derivations
on von Neumann algebras coming from group-measure space constructions. We will then
show how to apply these results to obtain new examples of von Neumann algebras which
do not arise as group-measure space constructions, for example the von Neumann algebra
L(SL3(Z) ∗G) where G is any non-trivial group. Results in greater generality can be found
in [27].

Throughout these notes all finite von Neumann algebras will be separable and come with
a faithful normal trace which we will denote by τ .

1. The group-measure space construction of Murray and von Neumann [20]

Let Γ be a countable discrete group and suppose we are given a measure preserving action
σ : Γ → Aut(X,µ) of Γ on a probability space (X,µ). Consider the abelian von Neumann
algebra A = L∞(X,µ) and for each γ ∈ Γ consider the mapping (which we still denote by
σγ) σγ : A → A given by σγ(f)(x) = f(σγ−1(x)), ∀x ∈ X. The assignment γ 7→ σγ defines
an action of Γ by integral preserving automorphisms of A.

Let H = `2(Γ, L2(X,µ)) be the Hilbert space of square summable functions from Γ into
L2(X,µ). It will be convenient to view vectors in this Hilbert space as formal sums ξ =
Σγ∈Γaγuγ where aγ ∈ L2(X,µ) is the coefficient of the function ξ at γ, i.e. aγ = ξ(γ). In

this setting the inner product on H then becomes 〈Σγ∈Γaγuγ,Σλ∈Γbλuλ〉 = Σγ∈Γ

∫
aγbγdµ.

If ξ = Σγ∈Γaγuγ ∈ H, and η = Σλ∈Γbλuλ ∈ H we define the convolution of ξ and η to be
the formal sum

ξ · η = (Σγ∈Γaγuγ) · (Σλ∈Γbλuλ)

= Σγ,λ∈Γaγσγ(bλ)uγλ = Σγ∈Γ(Σλ∈Γaγλ−1σγλ−1(bλ))uγ.

Note that for each γ ∈ Γ we have that

‖Σλ∈Γaγλ−1σγλ−1(bλ)‖1 ≤ Σλ∈Γ‖aγλ−1σγλ−1(bλ)‖1

≤ Σλ∈Γ‖aγλ−1‖2‖σγλ−1(bλ)‖2

≤ (Σλ∈Γ‖aγλ−1‖2
2)1/2(Σλ∈Γ‖bλ‖2

2)1/2 = ‖ξ‖2‖η‖2,

hence ξ · η is well defined as a function in `∞(Γ, L1(X,µ)), the space of bounded functions
from Γ to L1(X,µ).
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It may happen that ξ · η actually lies in H ⊂ `∞(Γ, L1(X,µ)), for instance this is the
case when η ∈ H is arbitrary and ξ ∈ AΓ the space of functions ξ with finite support and
coefficients lying in A. Consider the subset N of H given by N = {x ∈ H|x ·η ∈ H,∀η ∈ H}.
Then AΓ ⊂ N and N is an algebra under the multiplication given by covolution, note that
N contains a unit ue. Furthermore we define a ∗-structure on N by setting

(Σγ∈Γaγuγ)
∗ = Σγ∈Γσγ(aγ−1)uγ.

We also put a trace on N by the formula

τ(Σγ∈Γaγuγ) =

∫
aedµ

and in this way N becomes a tracial ∗-algebra, one checks that N is actually a von Neumann
algebra which we will denote by Aoσ Γ, we will often drop the σ in this notation.

Note that A ⊂ A o Γ is a von Neumann subalgebra where we identify a ∈ A with
aue ∈ Ao Γ, and our trace τ on Ao Γ extends the integral on A. Moreover, given γ ∈ Γ, uγ
will be a unitary operator which implements the automorphism σγ on A, i.e. uγau

∗
γ = σγ(a),

∀a ∈ A. Also note that we may realize N concretely as a von Neumann subalgebra of B(H)
where the representation is given by convolution (check that convolution describes a closed
operator in general and then use the Closed Graph Theorem to conclude that N ⊂ B(H)).

One example to keep in mind is the case when X is a point so that A = L∞(X,µ) = C.
In this case we denote the above construction by LΓ and it is called the group von Neumann
algebra associated to Γ. LΓ will be a II1 factor if and only if all nontrivial conjugacy classes
of Γ are infinite [21], i.e. |{γxγ−1|γ ∈ Γ}| =∞, ∀x ∈ Γ, x 6= e.

On the other hand if we assume that the action is free (σγ(x) = x, ∀x ∈ A =⇒ γ = e)
then A o Γ will be a II1 factor if and only if the action is also ergodic (σγ(x) = x, ∀γ ∈ Γ
=⇒ x ∈ C) [20], and in the case the action is free A is a Cartan subalgebra of A o Γ, i.e.
A is maximal abelian and its normalizer NAoΓ(A) = {u ∈ U(A o Γ)|uAu∗ = A} generates
Ao Γ as a von Neumann algebra.

Remark 1.1. Although group von Neumann algebras arise in this way as a crossed product
with C, we will say that a finite von Neumann algebra is a group-measure space construction
only if it arises as a crossed product with an abelian von Neumann algebra such that the
group is infinite and the action of the group is free.

Group-measure space constructions were the first class of II1 factors to be introduced [20].
The first examples of II1 factors which do not arise as a group-space construction are the
free group factors LFn, this is due to Voiculescu in [33]. This has been generalized in [3] to
include all amalgamated free products N = N1 ∗N0 N2 such that N embeds into Rω, N0 is
finite dimensional and dim(N0)−1−dim(N1)−1−dim(N2)−1 > 0 (here we use the convention
that ∞−1 = 0).

More recently, in [23] Ozawa and Popa gave a new proof that LFn is not a group-measure
space construction and they also proved that any non-amenable subfactor of LFn is not a
group-measure space construction (see also [24]). Houdayer, building on Ozawa and Popa’s
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results has shown in [15] that Γ = ((Z/2Z) oZ) ∗Z ((Z/2Z) oZ) is an example of a group such
that LΓ is a factor which is different from a free group factor and yet still has the property
that every non-amenable subfactor is not a group-measure space construction. Houdayer
also showed that L(Γ1 ∗ Γ2) is not a group-measure space construction whenever |Γ1| ≥ 2,
|Γ2| ≥ 3, and Γ1 and Γ2 are weakly amenable groups with constant 1.

The purpose of this talk is to give another approach to constructing II1 factors which do
not arise as group-measure space constructions. This approach will use deformation/rigidity
and intertwining techniques pioneered by Popa and in this way it is much more similar to
Ozawa and Popa’s approach as opposed to Voiculescu’s approach. However it should be
pointed out that Ozawa and Popa focus on a class of II1 factors which have the Haagerup
property while we will focus on a class of II1 factors which do not have the Haagerup property
although still have some strong type of deformations and so the results here are mostly
disjoint with these earlier results. Another major difference to this approach as opposed to
the ones before is that here we will use more directly the group-measure space decomposition
and as such these results are more specific to group-measure space constructions rather than
von Neumann algebras containing a Cartan subalgebra.

2. The Haagerup property and propety (T) of Kazhdan

Recall that given a countable discrete group Γ, a positive definite function on Γ is a map
ϕ : Γ→ C such that ∀Σγ∈Γαγuγ ∈ CΓ we have Σγ,λ∈Γαλ−1αγϕ(λ−1γ) ≥ 0.

Also recall that given a finite von Neumann algebra N , a completely positive (c.p.) map on
N is a map Φ : N → N such that ∀Σnxn⊗yn ∈ N⊗algN we have Σn,mτ(y∗mΦ(x∗nxn)ym) ≥ 0.
Completely positive maps are automatically ‖ · ‖2-continuous and hence we may (and often
do) view them as bounded operators on L2(N, τ).

A positive definite function ϕ : Γ → C gives rise to a c.p. map Φϕ : LΓ → LΓ such that
∀Σγ∈Γαγuγ ∈ LΓ we have:

Φϕ(Σγ∈Γαγuγ) = Σγ∈Γαγϕ(γ)uγ.

Also, given a c.p. map Φ : LΓ→ LΓ we obtain a positive definite function ϕΦ on Γ by means
of the formula:

ϕΦ(γ) = τ(Φ(uγ)u
∗
γ),∀γ ∈ Γ.

One way in which positive definite functions appear is when we have a unitary represen-
tation π : Γ → U(K), together with a vector ξ ∈ K. Then one can check that the formula
given by:

ϕξ(γ) = 〈π(γ)ξ, ξ〉, ∀γ ∈ Γ

describes a positive definite function on Γ. It turns out in fact that every positive definite
function arrises in this way. Specifically, if ϕ : Γ→ Γ is a positive definite function then we
may place a pseudo-inner product on CΓ by the formula:

〈Σγ∈Γαγuγ,Σλ∈Γβλuλ〉ϕ = Σγ,λ∈Γβλ−1αγϕ(λ−1γ).
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The positivity of this inner product is given by the fact that ϕ is positive definite. After
quotienting by the kernel and completion we obtain a Hilbert space K. Moreover there is a
natural unitary representation of Γ on K given by

πϕ(γ0)Σγ∈Γαγuγ = Σγ∈Γαγuγ0γ.

One has to check that this action is well defined and preserves the inner product structure,
and then the vector ξϕ = ue gives the formula above. ξϕ is a cyclic vector to this representa-
tion and so we can see that investigating the class of positive definite functions is the same
as investigating the class of unitary representations with a fixed cyclic vector.

One may wish to check the correspondence described above satisfies the following rela-
tionships:

positive definite functions pointed unitary representations

ϕ = 1 the trivial representation
ϕ = δe the left regular representation on `2Γ, ξ = δe

ϕ = δΛ, Λ < Γ the quasi-regular representation on `2(Γ/Λ), ξ = δΛ

ϕ a character the one dimensional representation given by the character
addition direct sum
product tensor product

pointwise convergence convergence in the pointed Fell topology

Similar to the group case, for finite von Neumann algebras there is a correspondence
between c.p. maps, and Hilbert bimodules. Specifically, to each c.p. map Φ : N → N there
exists a unique Hilbert N -N bimodule HΦ and a cyclic vector ξΦ ∈ HΦ which satisfies the
formula:

τ(Φ(x)y) = 〈xξΦy, ξΦ〉,∀x, y ∈ N.
For the specific details of this correspondence we refer the reader to [28] or [29].

One can also check that the correspondence between c.p. maps and pointed Hilbert bi-
modules satisfies the following relationships:

completely positive maps on N pointed Hilbert N -N bimodules

Φ = id the trivial bimodule L2(N, τ) with ξ = 1
Φ = τ The coarse bimodule L2(N, τ)⊗L2(N, τ) with ξ = 1⊗ 1

Φ = EB, B ⊂ N The basic construction L2〈N,B〉, ξ = eB
Φ = θ an automorphism L2(N, τ) with the structure x · η · y = xηθ(y), ξ = 1

addition direct sum
composition Connes fusion

‖ · ‖2-pointwise convergence convergence in the pointed Fell topology

Notions such as amenability, the Haagerup property, or property (T) of Kazhdan may
be thought of as measuring how well the trivial representation can be approximated in
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other representations, or equivalently from above, how well the constant function 1 can be
approximated by other positive definite functions.

Exercise 2.1. Show that a countable discrete group Γ is amenable if and only if there exists
a sequence of positive definite functions ϕn : Γ→ C which have finite support and converge
pointwise to 1.

Definition 2.2 ([14]). A countable discrete group Γ has the Haagerup property if the fol-
lowing equivalent conditions are satisfied:

(a). There exists a sequence of C0 positive definite functions ϕn : Γ → C which converge
pointwise to 1.

(b). There exists a C0-representation which almost contains invariant vectors.

Some examples of groups with the Haagerup property include amenable groups, free
groups, surface groups, Coxeter groups, groups acting properly on trees, and groups act-
ing properly on a space with walls. The Haagerup property is stable under direct product,
free product (with amalgamation over a finite subgroup), increasing union, taking subgroups,
extensions with amenable quotients, and wreath product. We refer the reader to [4] for more
information on the Haagerup property.

The only known obstruction to the Haagerup property is the existence of an infinite subset
X ⊂ Γ which has relative property (T) which we define now. This should be compared with
Theorem 3.5 below.

Definition 2.3 ([17, 19, 9]). Let Γ be a countable discrete group and X ⊂ Γ, the pair (Γ, X)
has relative property (T) if the following condition is satisfied:

(a). Any sequence of positive definite functions ϕn : Γ→ C which converges pointwise to 1
also converges uniformly to 1 on X.

Moreover if X = Λ is a subgroup then this is equivalent to the following condition:

(b). Any representation π : Γ→ U(K) which does not contain non-zero Λ invariant vectors
has a spectral gap, i.e. ∃F ⊂ Γ finite C0 > 0 such that ‖ξ‖ ≤ C0Σγ∈Γ‖π(γ)ξ − ξ‖, ∀ξ ∈ K.

Γ is said to have property (T) of Kazhdan if the pair (Γ,Γ) has relative property (T).

The first examples of groups with property (T) were given by lattices in SLn(R), for n ≥ 3.
(Z2 o SL2(Z),Z2) is an example of a group-subgroup pair with relative property (T) even
though both Z2 and SL2(Z) have the Haagerup property.

Exercise 2.4. Show that a group Γ has the Haagerup property and property (T) if and only
if it is finite.

Exercise 2.5. Show that in part (b) of the definition of relative property (T) for subgroups
that the set F ⊂ Γ and C0 > 0 may be taken independently of the representation K.

Exercise 2.6. Show that a group Γ with property (T) is finitely generated.
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Exercise 2.7. Show that property (T) is stable under taking direct products and quotients.

We also introduce the notions of the Haagerup propety and property (T) for finite von
Neumann algebras.

Definition 2.8. Let N be a finite von Neumann algebra and H an N -N Hilbert bimodule.
H is said to be a compact correspondence if it has compact matrix coefficients, i.e. given
any bounded vector ξ ∈ H the c.p. map Φξ : N → N is compact when viewed as an
operator on L2(N, τ). EquivalentlyH is a compact correspondence if given any two sequences
{xn}n, {yn}n ⊂ (N)1 such that xn → x weakly and yn → y weakly, then 〈xnη1yn, η2〉 →
〈xη1y, η2〉, ∀η1, η2 ∈ H.

Definition 2.9 ([5]). A finite von Neumann algebra N has the Haagup property if following
equivalent conditions are satisfied:

(a). There is a sequence of unital, tracial c.p. maps Φn : N → N which are compact when
viewed as maps on L2N and which converge pointwise in ‖ · ‖2 to the identity.

(b). There is a compact correspondence H which contains almost central unit vectors.

See [2] for more on compact correspondences and the Haagerup property.
From above relation between positive definite functions and c.p. maps we obtain the

following theorem.

Theorem 2.10 ([5]). A countable discrete group Γ has the Haagerup property if and only if
the associated group von Neumann algebra LΓ has the Haagerup property.

Definition 2.11 ([7], [8], [29]). Let N be a finite von Neumann algebra and B ⊂ N a von
Neumann subalgebra then the inclusion (B ⊂ N) is rigid (or has relative property (T)) if
the following equivalent conditions are satisfied:

(a). Any sequence of unital, tracial c.p. maps Φn : N → N which converge pointwise in ‖ · ‖2

to the identity also converges uniformly to the identity on (B)1.

(b). Any Hilbert bimodule H which does not contain non-zero B-central vectors must have
a spectral gap, i.e. ∃F ⊂ N finite, C0 > 0 such that ‖ξ‖ ≤ C0Σx∈F‖xξ − ξx‖.

N has property (T) if the inclusion (N ⊂ N) is rigid.

The equivalence between property (T) for groups and property (T) for von Neumann
algebras is a bit more difficult than for the Haagerup property. One must show that if a
unital c.p. map Φ is uniformly close to the identity on {uγ}γ∈Γ then it must be uniformly
close to the identity on all of (LΓ)1. This is achieved by looking at the pointed Hilbert
bimodule (HΦ, ξΦ) associated to Φ and then averaging over {uγ}γ∈Γ to obtain a LΓ-central
vector which is close to ξΦ. This then shows that Φ must be uniformly close to the identity
on (LΓ)1 and hence we have the following theorem.

Theorem 2.12 ([8]). A countable discrete group Γ has propety (T) if and only if LΓ has
propety (T).
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With the machinery we have developed we will now outline a proof of Connes’ result [6]
that a II1 factor with property (T) has countable fundamental group.

Exercise 2.13. Show that a II1 factor N with property (T) has countable fundamental
group by the following steps.

1. Show that an automorphism on a II1 factor M , α : M →M such that ‖α(x)−x‖2 ≤ c < 1
must be inner. Hint: Average over the unitaries α(u)u∗ then take a polar decomposition and
show that the partial isometry in the decomposition is actually a unitary which implements
α.

2. Show that if M is a II1 factor with property (T) then the space of inner automorphisms
is open (and hence also closed) in the space of all automorphisms under the topology of
pointwise ‖ · ‖2-convergence.

3. Show that if M is a separable II1 factor then the space of all automorphisms under the
topology of pointwise ‖ · ‖2-convergence is a separable Polish space and so if the space of
inner automorphisms is closed then the space of outer automorphisms must be discrete and
separable, hence countable.

4. Show that property (T) is closed under taking tensor products.

5. Show that the fundamental group of a II1 factor N embedds into the outer automorphism
group of the tensor product N⊗N . Hint: Use the fact that we always have the isomorphism
N⊗N ∼= N t⊗N1/t, ∀t > 0.

3. Cocycles & closable derivations

Given a countable discrete group Γ and a unitary representation π : Γ→ U(K), a cocycle
is a map c : Γ→ K which satisfies the identity c(γ1γ2) = c(γ1) + π(γ1)c(γ2), ∀γ1, γ2 ∈ Γ. A
cocycle c is said to be inner if there is a vector ξ ∈ K such that c(γ) = π(γ)ξ − ξ, ∀γ ∈ Γ.
Cocycles give rise naturally to affine actions on K by the fomula

α(γ)ξ = π(γ)ξ + c(γ),∀γ ∈ G, ξ ∈ K.
Moreover every affine action of Γ on a Hilbert space K arises in this way.

Hilbert spaces have the property that any bounded set has a unique Chebyshev center,
i.e. if X ⊂ K is bounded then there exists a unique point x0 ∈ K which minimizes the
value supx∈X ‖x−x0‖. Affine actions which leave a bounded set invariant will thus leave the
Chebyshev center invariant. This gives rise to the following:

Theorem 3.1. Let c : Γ → K be a cocycle and α the associated affine action on K. The
following are equivalent.

(a). c is inner.

(b). c is bounded.

(c). α has bounded orbits.
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(d). α has a bounded orbit.

(e). α has a fixed point.

A conditionally negative definite function on Γ is a function ψ : Γ → C such that
∀Σγ∈Γαγuγ ∈ CΓ with Σγ∈Γαγ = 0 we have Σγ,λ∈Γαλ−1αγψ(λ−1γ) ≤ 0. A cocycle c : Γ→ K
gives rise to a positive valued conditionally negative definite function by the formula

ψc(γ) = ‖c(γ)‖2,∀γ ∈ Γ.

Every non-negative valued conditionally negative definite function arises in this way.
Non-negative valued conditionally negative definite functions are perhaps most useful

though for their connection to semigroups of positive definite functions which was estab-
lished by Schoenberg.

Theorem 3.2 ([32]). Let ψ : Γ → R be a non-negative valued function. Then ψ is condi-
tionally negative definite if and only if Φt = e−tψ is positive definite ∀t > 0 if and only if
ηα = α/(α + ψ) is positive definite ∀α > 0.

Given a positive definite function ϕ : Γ→ C it follows that the function ψ : Γ→ R given
by ψ(γ) = ϕ(e)ϕ(e)−ϕ(γ)ϕ(γ), ∀γ ∈ Γ is conditionally negative definite. In particular if we
have a sequence of positive definite functions ϕn : Γ→ C such that limn→∞ |1− ϕn(γ)| = 0,
and if we enumerate our group as {γn}n∈N with γ1 = e then we may take a subsequence ϕkn

such that |1 − ϕ(γj)ϕ(γj)| < 2−n, ∀j ≤ n. We then have that ψ(γ) = Σn∈Nϕkn(e)ϕkn(e) −
ϕkn(γ)ϕkn(γ) gives a well defined conditionally negative definite function, and moreover ψ
will be bounded on a subset X ⊂ Γ if and only if the subsequence ϕkn converges uniformly
to 1 on X.

As a consequence we obtain new characterizations of the Haagerup property and property
(T).

Theorem 3.3 ([1]). Let Γ be a countable discrete group, then the following are equivalent:

(a). Γ has the Haagerup property.

(b). There exists a proper conditionally negative definite function on Γ.

(c). There exists a proper cocycle c : Γ→ K.

(d). There exists a proper cocycle into a C0-representation.

Theorem 3.4 ([11], [13]). Let Γ be a countable discrete group, then the following are equiv-
alent:

(a). Γ has property (T).

(b). Every conditionally negative definite function on Γ is bounded.

(c). Every cocycle c : Γ→ K is inner

(d). Every affine action of Γ on a Hilbert space has a fixed point.
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We also point out an explicit consequence from the proof of Theorem 3.3 which we will
use in the sequel.

Theorem 3.5. Suppose a countable discrete group Γ has a sequence of positive definite
functions ϕn : Γ → C such that limn→∞ |1 − ϕn(γ)| = 0, ∀γ ∈ Γ and such that given any
sequence mk ∈ N there exists a sequence nk ∈ N with nk ≥ mk, ∀k ∈ N and ϕnk

does
not converge uniformly on any infinite subset, i.e. ∀X ⊂ Γ infinite lim supk→∞ supγ∈X |1 −
ϕnk

(γ)| 6= 0. Then Γ has the Haagerup property.

Proof. Note that by considering the positive definite functions γ 7→ |<(ϕn(γ)/ϕn(e))|2 we
may assume that ϕn takes real values between 0 and 1. Let {γn}n be an enumeration of Γ,
since limn→∞ |1 − ϕn(γ)| = 0, ∀γ ∈ Γ we may construct a sequence mk such that ∀n ≥ mk

we have 1− ϕn(γj) < 4−k, ∀1 ≤ j ≤ k.
By assumption we may then find a sequence nk such that nk ≥ mk and ϕnk

does not
converge uniformly on any infinite subset of Γ. Define the conditionally completely negative
function ψ by ψ(γ) = Σ∞k=12k(1 − ϕnk

(γ)). Note that since nk ≥ mk, we have ψ(γ) < ∞,
∀γ ∈ Γ, and if ψ is bounded by K on a set X ⊂ Γ then ∀x ∈ X we have 1−ϕnk

(x) ≤ K2−k,
∀k ∈ N hence X must be finite and so ψ is proper. �

Exercise 3.6. Show that if ψ : Γ → R is a non-negative valued conditionally negative
definite function then ψβ is also conditionally negative definite ∀0 < β ≤ 1. Hint: Show that
ψβ is the limit of bounded conditionally negative definite functions by using the formula:

sβ =
sin((1− β)π)

π

∫ ∞

0

s

t+ s
tβ−1dt.

The analogue of a cocycle in finite von Neumann algebras is the notion of a closable
derivation. We briefly sketch the basic theory of closable derivations here.

Suppose N is a finite von Neumann algebra, D(δ) ⊂ N a weakly dense ∗-subalgebra,
H an N -N Hilbert bimodule, and δ : D(δ) → H a derivation (δ(xy) = xδ(y) + δ(x)y,
∀x, y ∈ D(δ)), which is closable (as an unbounded operator from L2(N, τ) to H), and real
(〈δ(x), yδ(z)〉 = 〈δ(z∗)y∗, δ(x∗)〉, ∀x, y, z ∈ D(δ)).

It follows from [30] and [12] that D(δ) ∩ N is a ∗-subalgebra of N and δ|D(δ)∩N is again

a derivation. Let ∆ = δ∗δ, then ∆ is the generator of a completely Dirichlet form [30].
Associated to ∆ are two natural deformations of N , the first is the completely positive
semigroup (completely Markovian semigroup) {Φt}t>0, each Φt = exp (−t∆) is a c.p. map
which is unital (Φt(1) = 1), tracial (τ ◦ Φt = τ), and positive (τ(Φt(x)x∗) ≥ 0, ∀x ∈ N),
moreover the semigroup property is satisfied (Φt+s = Φt ◦ Φs, ∀s, t > 0), and ∀x ∈ N ,
‖x − Φt(x)‖2 → 0, as t → 0. The second deformation associated to ∆ is the deformation
coming from resolvent maps {ηα}α>0, again each ηα = α(α + ∆)−1 is a unital, tracial,
positive, c.p. map such that ∀x ∈ N , ‖x−ηα(x)‖2 → 0, as α→∞, furthermore βηα−αηβ =
(β − α)ηα ◦ ηβ, ∀α, β > 0.

The relationship between these maps are as follows and can be found for example in [18]:

∆ = lim
t→0

1

t
(id− Φt) = α(η−1

α − id) = lim
α→∞

α(id− ηα),
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Φt = exp(−t∆) = lim
α→∞

exp(−tα(id− ηα)),

ηα = α(α + ∆)−1 = α

∫ ∞

0

e−αtΦtdt.

Note that we will use the same symbols ∆,Φt, and ηα for the maps on N as well as the
corresponding extensions to L2(N, τ). Also note that ηα maps into the domain of ∆ and

∆ ◦ ηα = α(id − ηα). Furthermore we have that Range(ηα) = D(∆) ⊂ D(δ), D(∆
1
2 ) =

D(δ) =Range(η
1/2
α ) and ∀x ∈ D(δ), ‖∆ 1

2 (x)‖2 = ‖δ(x)‖2.
From the point of view of uniform converges the deformations {Φt}t→0 and {ηα}α→∞ are

equivalent in the sense that if B ⊂ N is a von Neumann subalgebra then one will converge
uniformly on (B)1 if and only if the other does also.

We mention that ∆
1
2 also generates a completely positive deformation as is shown in [31]

by the formula: ∆
1
2 = π−1

∫∞
0
t−1/2(id− ηt)dt.

Example 3.7. Suppose Γ is a countable discrete group, π : Γ → O(K) is an orthogonal
representation, and c : Γ → K is a 1-cocycle. Then as we showed above we have associated
to this cocycle a conditionally negative definite function ψ given by ψ(γ) = ‖c(γ)‖2

2, there is
also a semigroup of positive definite functions {ϕt}t given by ϕt(γ) = e−tψ(γ), and the set of
positive definite resolvents {χα}α given by χα(γ) = α/(α + ψ(γ)).

Let H = K⊗RL
2(LΓ) and equip H with the LΓ bimodule structure which satisfies uγ(ξ⊗

ξ′) = π(γ)ξ ⊗ uγξ′ and (ξ ⊗ ξ′)uγ = ξ ⊗ ξ′uγ, ∀γ ∈ Γ, ξ ∈ H, ξ′ ∈ L2(LΓ). Let δc : CΓ→ H
be the derivation which satisfies δc(uγ) = c(γ) ⊗ uγ, ∀γ ∈ Γ, then δc is a real closable
derivation and so as described above we can associated with δc the c.c.n. map ∆ along
with the deformations {Φt}t and {ηα}α. It can be easily checked that we have the following
relationships:

∆(uγ) = ψ(γ)uγ,∀γ ∈ Γ,

Φt(uγ) = ϕt(γ)uγ,∀γ ∈ Γ, t > 0,

ηα(uγ) = χα(γ)uγ,∀γ ∈ Γ, α > 0.

Note that in this case we have that if Λ < Γ then the derivation δc|CΛ is inner if and only
if the cocycle c|Λ is inner if and only if the deformation {ηα}α converges uniformly on (LΛ)1.
Note also that if K is the left regular representation of Γ then H is the coarse correspondence
for LΓ. Also if K is a C0-representation then H is a compact correspondence.

Example 3.8. Suppose (M1, τ1) and (M2, τ2) are finite diffuse von Neumann algebras, and
let (M, τ) = (M1 ∗M2, τ1 ∗ τ2). If we let δi : M1 ∗Alg M2 → L2(M) ⊗ L2(M) be the unique
derivation which satisfies δi(x) = x ⊗ 1 − 1 ⊗ x, ∀x ∈ Mi and δi(y) = 0, ∀y ∈ Mj where
j 6= i. Then it is easy to check that δi defines a closable real derivation and a simple
calculation (see for example Corollary 4.2 and the following remark in [25]) shows that
the associated semigroups of c.p. maps are given by Φ1

s = (e−2sid + (1 − e−2s)τ) ∗ id, and
Φ2
s = id∗(e−2sid+(1−e−2s)τ). In particular we have that {Φj

s}s does not converge uniformly
on (M)1 as s→ 0.
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Since the range of η
1/2
α is the same as the domain of δ we may take the composition δ ◦η1/2

α

to obtain a bounded operator from L2(N, τ) to H whose norm is no more than (2α)1/2. In

fact α‖x − ηα(x)‖2
2 ≤ ‖δ ◦ η

1/2
α (x)‖2

2 = ατ((x − ηα(x))x∗) ≤ α‖x − ηα(x)‖2, ∀x ∈ N . It

will be convenient therefore to use the following notation, we will let ζα = η
1/2
α , and we will

let δ̃α = α−1/2δ ◦ ζα. The main technical lemma we will use regarding closable derivations
is that δ̃α is sufficiently close to δ to remember the bimodule structure. Specifically we
have the following estimate for which a proof can be found in [26] or [24]. We note that in

the following estimate the term δ̃α(a) will be uniformly small for a ∈ F and thus we may
omit this term from the inequality. We have chosen to keep this term however in order to
emphasize the fact that δ̃α is almost a derivation.

Lemma 3.9 ([26]). Using the same notation as above if F ⊂ (N)1, such that {ηα}α converges
uniformly on F (F possibly infinite), then ∀ε > 0, ∃α0 > 0, such that ∀α ≥ α0 we have

that ‖δ̃α(ax)− ζα(a)δ̃α(x)− δ̃α(a)ζα(x)‖2
2 < ε, and ‖δ̃α(xa)− δ̃α(x)ζα(a)− ζα(x)δ̃α(a)‖2

2 < ε,
∀a ∈ F , x ∈ (N)1.

Specifically it follows from [24] that the left hand sides of the equation above will be less

than or equal to 10‖δ̃α(x)‖.

4. II1 factors not arising as group-measure space constructions

Definition 4.1. Let C be the class of groups Γ such that Γ does not have the Haagerup
property and there exists an unbounded cocycle into a C0-representation.

Examples of groups in C include all free products which do not have the Haagerup property

or more generally all groups Γ not having the Haagerup property such that β
(2)
1 (Γ) > 0.

Examples of groups which are not in the class C (in addition to the ones with Haagerup
property of course) include all groups which are a direct product of two infinite groups.

The class C also does not contain all groups which contain an infinite normal abelian
subgroup, this follows from [10] and for comparison to the von Neumann algebra results
below we will repeat the argument here.

Theorem 4.2 ([10]). Suppose Γ is a countable discrete group with ΛC Γ an infinite abelian
normal subgroup. Then any cocycle c : Γ → K into a C0-representation must be either
bounded or proper. In particular if Γ does not have the Haagerup property then all such
cocycles must be bounded (and hence inner).

Proof. Let c : Γ → K be such a cocycle. If c is not proper then there exists an infinite
sequence γn →∞ in Γ such that c is bounded by K on {γn}n. Take an element a ∈ Λ, then
by the cocycle identity c is bounded by 3K on the set {γnaγ−1

n }n ⊂ Λ. If this subset is infinite
for some a then take a subsequence {an = γknaγ

−1
kn
}n which goes to infinity. Then given any

b ∈ Λ we have 2‖c(b)‖2 = limn→∞ ‖π(an)c(b) − c(b)‖2 from the fact that the representation
is C0. On the other hand by using the cocycle identity we have

lim
n→∞

‖π(an)c(b)− c(b)‖2 = lim
n→∞

‖c(anb)− c(an)− c(b)‖2
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= lim
n→∞

‖π(b)c(an)− c(an)‖2 ≤ (6K)2.

If {γnaγ−1
n }n is finite then there is a subsequence {γkn}n such that [γ−1

km
γkn , a] = e, ∀n,m ∈

N. Thus if {γnaγ−1
n }n is finite ∀a ∈ Λ then by taking a diagonal subsequence we then

construct in this way a sequence γ′n such that γ′n → ∞, [γ′n, a] → e, ∀a ∈ Λ, and ‖c(γ′n)‖ <
2K. Then using the same estimate as above we have that ∀a ∈ Λ

2‖c(b)‖2 = lim
n→∞

‖π(γ′n)c(a)− c(a)‖2

= lim
n→∞

‖π(a)c(γ′n)− c(γ′n)‖2 ≤ (4K)2.

Hence in either case we have that ‖c(a)‖ ≤ 6K, ∀a ∈ Λ. Now take γ ∈ Γ, and take an ∈ Λ,
an →∞. Then

‖c(γ)‖2 = lim
n→∞

‖π(an)c(γ)− c(γ)‖2

= lim
n→∞

‖c(anγ)− c(an)− c(γ)‖2

= lim
n→∞

‖π(γ)c(γ−1anγ)− c(an)‖2 ≤ (12K)2.

Thus we have shown that ‖c(γ)‖ ≤ 12K, ∀γ ∈ Γ. �

We now prove two theorems for von Neumann algebras which may be thought of as
analogues to the previous theorem for groups.

Theorem 4.3. Let M be a II1 factor and A ⊂ M a maximal abelian von Neumann sub-
algebra. Suppose that δ : M → H is a closable real derivation with associated deformation
ηα and such that H is a compact A-A correspondence. If there is a non-‖ · ‖2-precompact
subset X ⊂ U(A) on which the deformation ηα converges uniformly then the deformation ηα
converges uniformly on all of (A)1.

Proof. Using the same notation as above, suppose that X ⊂ U(A) is non-‖ · ‖2-precompact
and suppose ηα converges uniformly on X. By taking a countable subset of X with the same
property we will assume that we can enumerate X as X = {vn}n.

Since {vn}n is not ‖ · ‖2-precompact it follows that there is a subsequence such that no
finer subsequence converges in ‖ · ‖2. Using the fact that the unit ball is weakly compact we
may then take another subsequence which weakly converges to an element x ∈ (A)1. Hence
we will assume that vn converges weakly to x ∈ (A)1 but vn does not converges in ‖ · ‖2.

If x were a unitary then we would have ‖x− vn‖2
2 = 2− τ(xv∗n)− τ(x∗vn)→ 0 and hence

since we are assuming that we do not have ‖ · ‖2 convergence we conclude that x is not a
unitary. In particular this means that we can take a non-zero spectral project p of |x| so
that ‖px‖∞ = c < 1.

Now let ε > 0 be given. Take α0 > 0 such that ∀α > α0 we have ‖δ̃α(vn)‖2 < (1− c)ε/20,

∀n ∈ N, and ‖δ̃α(p)‖ < (1− c)ε/20. Given a ∈ (A)1 we then have

‖δ̃α(pa)‖2
2 = |〈δ̃α(vnpav

∗
n), δ̃α(pa)〉|

≤ |〈ζα(vnp)δ̃α(pa)ζα(vn), δ̃α(pa)〉|+ (1− c)ε
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→n→∞ |〈ζα(xp)δ̃α(pa)ζα(x), δ̃α(pa)〉|+ (1− c)ε
≤ ‖xp‖∞‖δ̃α(a)‖2

2 + (1− c)ε.
Hence ‖δ̃α(pa)‖2

2 ≤ ε, ∀a ∈ (A)1.
Thus ηα converges uniformly on p(A)1. If by Zorn’s Lemma we denote by pmax the maximal

projection q ∈ P(A) such that ηα converges uniformly on q(A)1 then it is easy to see that
pmax must live in the center of N , on the other hand we showed above that pmax ≥ p 6= 0 and
hence by factoriality we must have that pmax = 1, i.e. ηα converges uniformly on (A)1. �

Theorem 4.4. Let Γ be a countable discrete group, and σ : Γ→ Aut(A) a free ergodic action.
Let N = AoΓ be the resulting group-measure space construction. Suppose N ⊂M and there
exists a closable real derivation δ : M → H such that H is a compact N-N bimodule and the
deformation ηα does not converge uniformly on (N)1. Then Γ has the Haagerup property.

Proof. We will show that given an infinite subset X ⊂ Γ the deformation does not converges
uniformly on X, the fact that Γ has the Haagerup propety then follows from Theorem 3.5.

Suppose by contradiction that ηα did converge uniformly on an infinite set {γn}n ⊂ Γ.
If there exists some a ∈ U(A) such that {uγnau

∗
γn
}n is not ‖ · ‖2-precompact then from

Theorem 4.3 we would have that ηα converges uniformly on U(A) and hence. On the other
hand if {uγnau

∗
γn
}n is ‖ · ‖2-precompact, ∀a ∈ U(A) then given any a ∈ U(A), α > 0 we have

that {δ̃α(uγnau
∗
γn

)}n is also precompact and hence

‖δ̃α(a)‖2
2 ∼ |〈ζα(uγn)δ̃α(a)ζα(u∗γn

), ζα(uγn)δ̃α(a)ζα(u∗γn
)〉|

∼ |〈ζα(uγn)δ̃α(a)ζα(u∗γn
), δ̃α(uγnau

∗
γn

)〉| →n→∞ 0.

Thus again we show that ηα converges uniformly on U(A).
However if ηα converges uniformly on U(A) then it follows from Theorem 4.5 in [26] that

ηα must also converge uniformly on NN(A)′′ = N which contradicts our assumption on the
deformation. �

We mention one immediate consequence which follows from [26].

Corollary 4.5. Let Γ be a countable discrete group, and σ : Γ → Aut(A) a free ergodic
action. Let N = AoΓ be the resulting group-measure space construction. If Γ does not have
the Haagerup property then N is L2-rigid, in particular N satisfies the Kurosh Theorem
([22], [16]) for free products.

To obtain new examples of groups which do not arise as group-measure space constructions
we first recall a result of Popa:

Theorem 4.6 ([29]). Let Γ be a countable discrete group, and σ : Γ→ Aut(A) a free ergodic
action. Let N = A o Γ be the resulting group-measure space construction. If Γ has the
Haagerup property and B ⊂ N is a von Neumann subalgebra such that (B ⊂ N) is rigid,
then there exists a corner of B which embeds into A inside of N , i.e. there exists a non-zero
projection f in B′ ∩ 〈N,A〉 of finite trace.
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We remark that if B ⊂ N is a type II1 von Neumann subalgebra and A ⊂ N is a type
I subalgebra then we cannot have that a corner of B embeds into A inside of N . Thus it
follows that if Γ has the Haagerup property and σ : Γ → Aut(A) is a free ergodic action
then N = A o Γ cannot contain a type II1 subalgebra B such that (B ⊂ N) is rigid. As a
consequence from Theorems 4.4 and 4.6 we obtain the following:

Corollary 4.7. Suppose N = LΓ where Γ ∈ C is an i.c.c. group or suppose N = N1 ∗ N2

where Nj are diffuse finite von Neumann algebras. If N contains a type II1 rigid subalgebra
then N is not a group-measure space construction.

A specific example of a group which satisfies the hypotheses of the previous corollary is
the group SL3(Z) ∗G where G is any non-trivial group.
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